Answer:
![[Ag^+]=4.82x10^(-5)M](https://img.qammunity.org/2021/formulas/chemistry/college/sqqp20nmgrezmhlnikg8gxr5d6ua95ralx.png)
Step-by-step explanation:
Hello,
In this case, the dissociation reaction for silver phosphate is:
![Ag_3PO_4(s)\rightleftharpoons 3Ag^+(aq)+PO_4^(3-)(aq)](https://img.qammunity.org/2021/formulas/chemistry/college/jt2fqhzt8xpoyvug15zdllmf2ankwcokrm.png)
Therefore, the equilibrium expression is:
![Ksp=[Ag^+]^3[PO_4^(3-)]](https://img.qammunity.org/2021/formulas/chemistry/college/72muqevvjdvn7hi9g04i6yottqiff38nog.png)
And in terms of the reaction extent
is:
![Ksp=1.8x10^(-18)=(3x)^3(x)](https://img.qammunity.org/2021/formulas/chemistry/college/im46uz39az6azb5srr729v7qfy6r1ox34k.png)
Thus,
turns out:
![1.8x10^(-18)=27x^4\\\\x=\sqrt[4]{(1.8x10^(-18))/(27) } \\\\x=1.61x10^(-5)M](https://img.qammunity.org/2021/formulas/chemistry/college/hrk5bd6cu3wy5x0q65ehtziql54ubfk9y9.png)
In such a way, the concentration of the silver ion is:
![[Ag^+]=3x=3*1.61x10^(-5)M=4.82x10^(-5)M](https://img.qammunity.org/2021/formulas/chemistry/college/c8lxqgc08k1xmpry1tebajcrir70jqjfw9.png)
Best regards.