Answer:
ΔE = GMm/24R
Step-by-step explanation:
centripetal acceleration a = V^2 / R = 2T/mr
T= kinetic energy
m= mass of satellite, r= radius of earth
= gravitational acceleration = GM / r^2
Now, solving for the kinetic energy:
T = GMm / 2r = -1/2 U,
where U is the potential energy
So the total energy is:
E = T+U = -GMm / 2r
Now we want to find the energy difference as r goes from one orbital radius to another:
ΔE = GMm/2 (1/R_1 - 1/R_2)
So in this case, R_1 is 3R (planet's radius + orbital altitude) and R_2 is 4R
ΔE = GMm/2R (1/3 - 1/4)
ΔE = GMm/24R