79.8k views
0 votes
Given v(x) = g(x) (3/2*x^4 + 4x – 1), find v'(2).​

Given v(x) = g(x) (3/2*x^4 + 4x – 1), find v'(2).​-example-1
User Aetheus
by
8.1k points

1 Answer

4 votes

Answer:

Explanation:

Given that v(x) = g(x)×(3/2*x^4+4x-1)

Let's find V'(2)

V(x) is a product of two functions

● V'(x) = g'(x)×(3/2*x^4+4x-1)+ g(x) ×(3/2*x^4+4x-1)

We are interested in V'(2) so we will replace x by 2 in the expression above.

g'(2) can be deduced from the graph.

● g'(2) is equal to the slope of the tangent line in 2.

● let m be that slope .

● g'(2) = m =>g'(2) = rise /run

● g'(2) = 2/1 =2

We've run 1 square to the right and rised 2 squares up to reach g(2)

g(2) is -1 as shown in the graph.

■■■■■■■■■■■■■■■■■■■■■■■■■■

Let's derivate the second function.

Let h(x) be that function

● h(x) = 3/2*x^4 +4x-1

● h'(x) = 3/2*4*x^3 + 4

● h'(x) = 6x^3 +4

Let's calculate h'(2)

● h'(2) = 6 × 2^3 + 4

● h'(2) = 52

Let's calculate h(2)

●h(2) = 3/2*2^4 + 4×2 -1

●h(2)= 31

■■■■■■■■■■■■■■■■■■■■■■■■■■

Replace now everything with its value to find V'(2)

● V'(2) = g'(2)×h(2) + g(2)× h'(2)

● V'(2)= 2×31 + (-1)×52

●V'(2) = 61 -52

●V'(2)= 9

User Alexdor
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories