146k views
0 votes
(a) A survey of the adults in a town shows that 8% have liver problems. Of these, it is also found that 25% are heavy drinkers, 35% are social drinkers and 40% are non-drinkers. Of those that did not suffer from liver problems, 5% are heavy drinkers, 65% are social drinkers and 30% do not drink at all. An adult is chosen at random, what is the probability that this person i. Has a liver problems? (3 Marks) ii. Is a heavy drinker (2 Marks) iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem? (2 Marks) iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker? (2 Marks) v. If a person is found to be a non –drinker, what is the probability that this person has liver problems. (2 Marks)

User Naxon
by
5.2k points

1 Answer

5 votes

Answer:

i. Has a liver problems?

= 0.08

ii. Is a heavy drinker ?

= 0.066

iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?

= 0.303

iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?

= 0.25

v. If a person is found to be a non –drinker, what is the probability that this person has liver problems?

= 0.104

Explanation:

We have 2 Events in this question

Event A: People with liver problems

Event B : People without liver problems

Event A: People with liver problems

Let us represent people with liver problems as = (L)

a)8% have liver problems. = P(L)

Under liver problems we have:

b) 25% are heavy drinkers = P( L & H)

c) 35% are social drinkers = P( L & S)

d) 40% are non-drinkers. = P( L & N)

Event B( no liver problem)

Let us represent no liver problem as NL

We are not given in the question but Probability of having no liver problem = 100 - Probability of having liver problem

= 100 - 8% = 92 %

P(NL ) = 92%

From the question, For people without liver problems, we have:

a) 5% are heavy drinkers = P(NL & H)

b) 65% are social drinkers = P( NL & S)

c) 30% do not drink at all = P( NL & N)

An adult is chosen at random, what is the probability that this person

i. Has a liver problems?

P(L) = 8% or 0.08

ii. Is a heavy drinker ?

From the question, we have:

Probability of people that have liver problems and are heavy drinkers P(L & H) = 25% = 0.25

Probability of people that have do not have liver problems and are heavy drinkers P(NL & H) = 5% = 0.05

Probability ( Heavy drinker) =

P(L) × P(L & H) + P(NL) × P(NL & H)

= 0.25 × 0.08 + 0.05 × 0.92

= 0.066

iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?

Probability (Heavy drinker and has liver problem) = [P(L) × P(L & H)] ÷ [P(L) × P(L & H)] + [P(NL) × P(NL & H) ]

= [0.25 × 0.08] ÷ [0.25 × 0.08] + [0.05 × 0.92]

= 0.303030303

Approximately = 0.303

iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?

P(L & H) = 25% = 0.25

v. If a person is found to be a non –drinker, what is the probability that this person has liver problems.?

People with liver problems are non-drinkers. = P( L & N) = 40% = 0.4

People without liver problems and do not drink at all = P( NL & N) = 30% = 0.3

Probability (non drinker and has liver problem) = [P( L & N) × P(L & H)] ÷ [P( L & N) × P(L & H)] + [ P( NL & N) × P(NL & H) ]

= [0.4× 0.08] ÷ [0.4 × 0.08] + [0.3 × 0.92]

= 0.1038961039

Approximately ≈ 0.104

User Travis Delly
by
5.4k points