107k views
3 votes
Solve and find at least 3 non-zero terms of each infinite series solutions to the differential equation about x=0 for 2x^2y" + xy' +x^2y = 0. Please show steps. Thanks!

User Yeliz
by
4.7k points

1 Answer

4 votes


\large \boxed{y=a_0\left( 1-(1)/(6)x^2+(1)/(168)x^4-(1)/(11088)x^6+...\right)}

Hello, please consider the following.

The equation is


2x^2y

Assume that, on a given domain where the sum is defined,


\displaystyle y=\sum_(n=0)^(\infty) a_nx^n

is a solution of the equation and we will find a recursion formula for the
(a_n)_(n\geq 0), then


\displaystyle y=\sum_(n=0)^(\infty) a_nx^n\\\\y'=\sum_(n=1)^(\infty) na_nx^(n-1)\\\\y''=\sum_(n=2)^(\infty) n(n-1)a_nx^(n-2)

So the equation becomes


\displaystyle 2x^2y'+xy'+x^2y=\sum_(n=2)^(\infty) 2n(n-1)a_nx^2x^(n-2)+\sum_(n=1)^(\infty) na_nxx^(n-1)+\sum_(n=0)^(\infty) a_nx^2x^n\\\\=\sum_(n=2)^(\infty) 2n(n-1)a_nx^(n)+\sum_(n=1)^(\infty) na_nx^n+\sum_(n=0)^(\infty) a_nx^(n+2)\\\\=\sum_(n=2)^(\infty) 2n(n-1)a_nx^(n)+\sum_(n=1)^(\infty) na_nx^n+\sum_(n=2)^(\infty) a_(n-2)x^(n)\\\\=a_1x+\sum_(n=2)^(\infty) 2n(n-1)a_nx^(n)+ na_nx^n+a_(n-2)x^(n)\\\\=a_1x+\sum_(n=2)^(\infty) \left((2n-2+1)na_n+a_(n-2)\right)x^(n)

And this is equal to 0, so we can say that


a_1=0\\(2n-1)na_n+a_(n-2)=0 \ \ \text{for n }\geq 2

It comes


\boxed{a_n=-(a_(n-2))/(n(2n-1))}


a_1=0 \ so \ a_3=0 \ \ and \ \ a_5=0 \ \ so \ \ a_(2n+1)=0\\a_2=(-a_0)/(2(4-1))=(-a_0)/(2*3)=-(a_0)/(6)\\\\a_4=-(a_2)/(4(8-1))=(a_0)/(2*3*4*7)=(a_0)/(168)\\\\a_6=-(a_4)/(6(12-1))=-(a_0)/(2*3*4*7*6*11)=(-a_0)/(11088)

So


y=a_0\left( 1-(1)/(6)x^2+(1)/(168)x^4-(1)/(11088)x^6+...\right)

We can go further to find a generic expression but only 3 non-zero terms were requested.

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

User Kobius
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.