Answer:
![\begin{tabular}\cline{1-3} Equation & x-intercepts & x-coordinate of vertex\\\cline{1-3} $y=x(x-2)$ & $x=0, x=2$ & $x=1$\\\cline{1-3} $y=(x-4)(x+5)$ & $x=-5, x=4$ & $x=-0.5$\\\cline{1-3} $y=-5x(x-3)$ & $x=0, x=3$ & $x=1.5$\\\cline{1-3} \end{tabular}](https://img.qammunity.org/2023/formulas/mathematics/college/w6p44nuhzv6axl958qz0wknx40u8sxkla8.png)
Explanation:
x-intercepts are when the curve intercepts the x-axis, so when y =0.
Therefore, to find the x-intercepts, substitute y = 0 and solve for x.
The vertex is the turning point: the minimum point of a parabola that opens upward, and the maximum point of the parabola that opens downward. As a parabola is symmetrical, the x-coordinate of the vertex is the midpoint of the x-intercepts.
Equation:
![y=x(x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/2eubse55yn8aeitsqszi5y9jy1k5eo84kt.png)
![\implies x(x-2)=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/r3jrvbok55fw2s3vn3v62rmis0z1o0h3mo.png)
![\implies x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/d4uaimm5c76ybh9l7bf4zv4rcmu4lv5wc2.png)
![\implies (x-2)=0 \implies x=2](https://img.qammunity.org/2023/formulas/mathematics/college/2i6o9qa54gqw4nwuz6rsr5rb4luadfmkwe.png)
Therefore, the x-intercepts are x = 0 and x = 2
The midpoint of the x-intercepts is x = 1, so the x-coordinate of the vertex is x = 1
Equation:
![y=(x-4)(x+5)](https://img.qammunity.org/2023/formulas/mathematics/college/z8kelm1zo5e1ot3ccjsn09kjk27ua6wti4.png)
![\implies (x-4)(x+5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/29azav8ndtxrid4p1md0s3gohnwum85ck6.png)
![\implies (x-4)=0 \implies x=4](https://img.qammunity.org/2023/formulas/mathematics/college/ffzb6b9ygxekdmka88kjz8lj6giyjhhz1d.png)
![\implies (x+5)=0 \implies x=-5](https://img.qammunity.org/2023/formulas/mathematics/college/56xh5gab3lbrxfd20zpwb8kbdvtuzeuszi.png)
Therefore, the x-intercepts are x = -5 and x = 4
The midpoint of the x-intercepts is x = -0.5, so the x-coordinate of the vertex is x = -0.5
Equation:
![y=-5x(3-x)](https://img.qammunity.org/2023/formulas/mathematics/college/qrkb068jdbyf151nboj3xa5qnhqijejdwh.png)
![\implies -5x(3-x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/c7vybgt37fj8edojkcm0ga1c39zqut1v41.png)
![\implies -5x=0 \implies x=0](https://img.qammunity.org/2023/formulas/mathematics/college/9gm2lcv80tlwtc3222dlv4w8h6poyvxdjx.png)
![\implies (3-x)=0 \implies x=3](https://img.qammunity.org/2023/formulas/mathematics/college/jc0q6myhjqtl7qfr94up91otorn5hcnzro.png)
Therefore, the x-intercepts are x = 0 and x = 3
The midpoint of the x-intercepts is x = 1.5, so the x-coordinate of the vertex is x = 1.5
![\begin{tabular}\cline{1-3} Equation & x-intercepts & x-coordinate of vertex\\\cline{1-3} $y=x(x-2)$ & $x=0, x=2$ & $x=1$\\\cline{1-3} $y=(x-4)(x+5)$ & $x=-5, x=4$ & $x=-0.5$\\\cline{1-3} $y=-5x(x-3)$ & $x=0, x=3$ & $x=1.5$\\\cline{1-3} \end{tabular}](https://img.qammunity.org/2023/formulas/mathematics/college/w6p44nuhzv6axl958qz0wknx40u8sxkla8.png)