94.8k views
3 votes
Please help with this

Please help with this-example-1

1 Answer

4 votes

Answer:


\sin \left(\theta \right)-(1)/(2)\cos \left(2\theta \rightt)+C

Explanation:

We are given the graph of r = cos( θ ) + sin( 2θ ) so that we are being asked to determine the integral. Remember that
\:r=cos\left(\theta \right)+sin\left(2\theta \right) can also be rewritten as
\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right.

Let's apply the functional rule
\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx,


\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right =
\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right

At the same time
\int \cos \left(\theta \right)d\theta \right=\sin \left(\theta \right) =
sin( \theta \right )), and
\int \sin \left(2\theta \right)d\theta \right =
-(1)/(2)\cos \left(2\theta \right). Let's substitute,


\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right =
\sin \left(\theta \right)-(1)/(2)\cos \left(2\theta \right)

And adding a constant C, we receive our final solution.


\sin \left(\theta \right)-(1)/(2)\cos \left(2\theta \rightt)+C - this is our integral

User Yazid Mekhtoub
by
5.4k points