Answer:
28.3°C
Step-by-step explanation:
Using
T(t) = (T(0) - 20)*(e^(-k*t)) + 20
for some positive number k, and some initial temperature T(0).
Boundary conditions:
T(4) = T(0) - 5 _______ (i)
T(8) = T(0) - 7 _______ (ii)
==> solving for T(0) and k :
(i):
(T(0) - 20)*(e^(-k*4)) + 20 = T(0) - 5 ==>
(T(0) - 20)*(e^(-k*4)) = T(0) - 20 - 5
(T(0) - 20)*(e^(-k*4)) = (T(0) - 20) - 5
5 = (T(0) - 20) - (T(0) - 20)*(e^(-k*4))
5 = (T(0) - 20) * ( 1 - e^(-k*4) )
(ii):
(T(0) - 20)*(e^(-k*8)) + 20 = T(0) - 7
(T(0) - 20)*(e^(-k*8)) = (T(0) - 20) - 7
7 = (T(0) - 20) - (T(0) - 20)*(e^(-k*8))
7 = (T(0) - 20) * (1 - e^(-k*8))
In both results, subsitute x = e^(-4k) and C = (T(0) - 20)
(i): 5 = C * (1 - x)
(ii): 7 = C * (1 - x^2) = C * (1-x)*(1+x)
Substitute C*(1-x) from (i) into (ii):
(ii): 7 = 5*(1+x) ==> (1+x) = 7/5 ==> x = 2/5
back into (i):
(i): 5 = C * (1 - 2/5) ==> 5 = C * 3/5 ==> C = 25/3
C = T(0) - 20 ==>
T(0) = C + 20 = 25/3 + 20 = 25/3 + 60/3 = 85/3
= 28.3°C