Answer:
b = 9.5 , c = 15
Explanation:
For b
To find side b we use the sine rule
![( |a| )/( \sin(A) ) = ( |b| )/( \sin(B) )](https://img.qammunity.org/2021/formulas/mathematics/college/g0zt3wnb6ec1a68z1nltpwe9juajvyivhw.png)
a = 7
A = 23°
B = 32°
b = ?
Substitute the values into the above formula
That's
![(7)/( \sin(23) ) = ( |b| )/( \sin(32) )](https://img.qammunity.org/2021/formulas/mathematics/college/rutq7dakpuolhdqan6k4uqniihmnggh0gi.png)
![|b| \sin(23) = 7 \sin(32)](https://img.qammunity.org/2021/formulas/mathematics/college/rg87zjwytkwzboeqd0312q9ir4nx1wio5g.png)
Divide both sides by sin 23°
![|b| = (7 \sin(32) )/( \sin(23) )](https://img.qammunity.org/2021/formulas/mathematics/college/x2suh4tbo6b2869mahevw9eg80nfhlsc40.png)
b = 9.493573
b = 9.5 to the nearest tenth
For c
To find side c we use sine rule
![( |a| )/( \sin(A) ) = ( |c| )/( \sin(C) )](https://img.qammunity.org/2021/formulas/mathematics/college/6eci2vfvigul2kskbpakpbjbrtgd3p0p5z.png)
C = 125°
So we have
![(7)/( \sin(23) ) = ( |c| )/( \sin(125) )](https://img.qammunity.org/2021/formulas/mathematics/college/pha6j90qumzuopii3p4ibd6537iyjyhu7l.png)
![|c| \sin(23) = 7 \sin(125)](https://img.qammunity.org/2021/formulas/mathematics/college/3fh9dohncyjyi178l5as3bs4p4k11ojui5.png)
Divide both sides by sin 23°
![|c| = (7 \sin(125) )/( \sin(23) )](https://img.qammunity.org/2021/formulas/mathematics/college/o412vum1kwscuxwf525es2gxjkelwhbsm1.png)
c = 14.67521
c = 15.0 to the nearest tenth
Hope this helps you