42.5k views
1 vote
Suppose that Y1, Y2,..., Yn denote a random sample of size n from a Poisson distribution with mean λ. Consider λˆ 1 = (Y1 + Y2)/2 and λˆ 2 = Y . Derive the efficiency of λˆ 1 relative to λˆ 2.

User Ronathan
by
5.4k points

1 Answer

1 vote

Answer:

The answer is "
\bold{(2)/(n)}".

Explanation:

considering
Y_1, Y_2,........, Y_n signify a random Poisson distribution of the sample size of n which means is λ.


E(Y_i)= \lambda \ \ \ \ \ and \ \ \ \ \ Var(Y_i)= \lambda

Let assume that,


\hat \lambda_i = (Y_1+Y_2)/(2)

multiply the above value by Var on both sides:


Var (\hat \lambda_1 )= Var((Y_1+Y_2)/(2) )


=(1)/(4)(Var (Y_1)+Var (Y_2))\\\\=(1)/(4)(\lambda+\lambda)\\\\=(1)/(4)( 2\lambda)\\\\=(\lambda)/(2)\\

now consider
\hat \lambda_2 =
\bar Y


Var (\hat \lambda_2 )= Var(\bar Y )


=Var \{ (\sum Y_i)/(n)\}


=(1)/(n^2)\{\sum_(i)^{}Var(Y_i)\}\\\\=(1)/(n^2)\{ n \lambda \}\\\\=(\lambda )/(n)\\

For calculating the efficiency divides the
\hat \lambda_1 \ \ \ and \ \ \ \hat \lambda_2 value:

Formula:


\bold{Efficiency = (Var(\lambda_2))/(Var(\lambda_1))}


=((\lambda)/(n))/((\lambda)/(2))\\\\= (\lambda)/(n) * \frac {2} {\lambda}\\\\ \boxed{= (2)/(n)}

User Paritosh Singh
by
6.1k points