Answer:
The width is
![w = 282.8](https://img.qammunity.org/2021/formulas/mathematics/college/a53sd4qlot0y114xu6684dztv0bcfg5qsv.png)
Explanation:
From the question we are told that
The sample size is n = 50
The population standard deviation is
![\sigma = \$ 1000](https://img.qammunity.org/2021/formulas/mathematics/college/xwvumguaqb04bf942fi97pfz38o2p34z1u.png)
The sample size is
![\= x = \$ 15,000](https://img.qammunity.org/2021/formulas/mathematics/college/aqzolndwwbdsz72h4a7nj69j2v0gqee68f.png)
Given that the confidence level is 90% then the level of significance can be mathematically represented as
![\alpha = 0.10](https://img.qammunity.org/2021/formulas/engineering/college/jps3unr82c4ioxfx6y9497rl6wkf1r013l.png)
Next we obtain the critical value of
from the normal distribution table, the value is
![Z_{(0.10 )/(2) } = 1.645](https://img.qammunity.org/2021/formulas/mathematics/college/pggjr31y442qo3hk5wcde6577tl08kjgjx.png)
Generally the margin of error is mathematically represented as
![E = Z_{(0.10)/(2) } * (\sigma )/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/ne3q0sbyacem73sand6ortk6igrzuoz728.png)
substituting values
![E = 1.645 * (1000 )/(√(50 ))](https://img.qammunity.org/2021/formulas/mathematics/college/7ntxbb7cbmltfzfausym3ieasamimzrkqd.png)
=>
![E = 141.42](https://img.qammunity.org/2021/formulas/mathematics/college/mfjds9a9me8xouijf3izz2fw0utx3tpynq.png)
The width of the 90% confidence level is mathematically represented as
![w = 2 * E](https://img.qammunity.org/2021/formulas/mathematics/college/up0po0ytetgf0qgm9deegndzqhxtw9spln.png)
substituting values
![w = 2 * 141.42](https://img.qammunity.org/2021/formulas/mathematics/college/zku1bzwd5ag4g7v75t1zpr2nhvn6gx8w13.png)
![w = 282.8](https://img.qammunity.org/2021/formulas/mathematics/college/a53sd4qlot0y114xu6684dztv0bcfg5qsv.png)