Answer:
![P(A\ or\ H) = (4)/(13)](https://img.qammunity.org/2021/formulas/mathematics/college/2u0nyvkcwgq6oobnmqvyzk0btwllk043ty.png)
Explanation:
Given
Number of Cards = 52
Required
Determine the probability of picking a heart or ace
Represent Ace with Ace and Heart = H
In a standard pack of cards; there are
![n(A) = 4](https://img.qammunity.org/2021/formulas/mathematics/college/2lpjvjlco1fsh22la5gbuttvenjbmgu5hy.png)
![n(H) = 13](https://img.qammunity.org/2021/formulas/mathematics/college/kxpsb90y1vtxat6zzz8orzq85oedgs90ky.png)
![n(A\ and\ H) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/1vzl78xgpvs91sj0xqfss2if4all343ik0.png)
![Total = 52](https://img.qammunity.org/2021/formulas/mathematics/college/mlllmnrvjuazgpepnl0hv3q2whq7vdsch5.png)
Because the events are non mutually exclusive
![P(A\ or\ H) = P(A) + P(H) - P(A\ and\ H)](https://img.qammunity.org/2021/formulas/mathematics/college/7ifwu58wk2hvr5hcci9lkulh106d1buo9x.png)
Where
![P(A) = (n(A))/(Total) = (4)/(52)](https://img.qammunity.org/2021/formulas/mathematics/college/k8496tchqavb3qslhf57jvp6i9989lfd6x.png)
![P(H) = (n(H))/(Total) = (13)/(52)](https://img.qammunity.org/2021/formulas/mathematics/college/w5a97ypdfio4uteg8va7msvl9v0u1y6z23.png)
![P(A\ and\ H) = (n(A\ and\ H))/(Total) = (1)/(52)](https://img.qammunity.org/2021/formulas/mathematics/college/71n7cltpti8vq1u3z3k7m5lyn3sfhnbk66.png)
Substitute these values in the above formula
![P(A\ or\ H) = P(A) + P(H) - P(A\ and\ H)](https://img.qammunity.org/2021/formulas/mathematics/college/7ifwu58wk2hvr5hcci9lkulh106d1buo9x.png)
![P(A\ or\ H) = (4)/(52) + (13)/(52) - (1)/(52)](https://img.qammunity.org/2021/formulas/mathematics/college/4pq01enysadb4ezjl1iaeqhm4blb0rqg29.png)
Take LCM
![P(A\ or\ H) = (4 + 13 - 1)/(52)](https://img.qammunity.org/2021/formulas/mathematics/college/xsnis8byqa196wgez2x2jol9rc4co951dn.png)
![P(A\ or\ H) = (16)/(52)](https://img.qammunity.org/2021/formulas/mathematics/college/x2gpx2ipzfur22p8b3y7vjjiaibg000z3k.png)
Reduce fraction to lowest term
![P(A\ or\ H) = (4)/(13)](https://img.qammunity.org/2021/formulas/mathematics/college/2u0nyvkcwgq6oobnmqvyzk0btwllk043ty.png)
Hence, probability of a heart or ace is 4/13