13.9k views
5 votes
Use Lagrange multipliers to find three numbers whose sum is 30 and the product P = x3y4z is a maximum. Choose the answer for the smallest of the three values. Question 20 options: a) 21/4 b) 5 c) 15/4 d) 3

User Asgaroth
by
4.6k points

1 Answer

3 votes

We want to maximize
x^3y^4z subject to the constraint
x+y+z=30.

The Lagrangian is


L(x,y,z,\lambda)=x^3y^4z-\lambda(x+y+z-30)

with critical points where the derivatives vanish:


L_x=3x^2y^4z-\lambda=0


L_y=4x^3y^3z-\lambda=0


L_z=x^3y^4-\lambda=0


L_\lambda=x+y+z-30=0


\implies\lambda=3x^2y^4z=4x^3y^3z=x^3y^4

We have


3x^2y^4z-4x^3y^3z=x^2y^3z(3y-4x)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}\\z=0,\text{ or}\\3y=4x\end{cases}


3x^2y^4z-x^3y^4=x^2y^4(3z-x)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}\\3z=x\end{cases}


4x^3y^3z-x^3y^4=x^3y^3(4z-y)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}4z=y\end{cases}

Let's work with
x=3z and
y=4z, for which we have


x+y+z=8z=30\implies z=\frac{15}4\implies\begin{cases}x=\frac{45}4\\y=15\end{cases}

The smallest of these is C. 15/4.

User Nicolas Payette
by
4.6k points