Complete Question
The complete question is shown on the first uploaded image
Answer:
Option C is the correct option
Explanation:
From the question we are told that
The equation is
![f (x, y , z ) = x^2 +y^2 + z^2](https://img.qammunity.org/2021/formulas/mathematics/college/6apnw43f4pt9e87gnnwd956u7illbcy4wv.png)
The constraint is
![P(x, y , z) = x + y + z - 24 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/izc3csk6zvmxavcrcyerqjldpjo6v3wmef.png)
Now using Lagrange multipliers we have that
![\lambda = ( \delta f )/( \delta z ) = 2 z](https://img.qammunity.org/2021/formulas/mathematics/college/o70j2037ylfqkj1spx8u8jn1e3ba4fmdl0.png)
=>
![x = ( \lambda )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/t9ulutnylu3mgqlbxh3g6m7q2nj61rsz3n.png)
![y = ( \lambda )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/bo2lhei0b59z8l96a770wbbvw371qo35so.png)
![z = ( \lambda )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/yristcjy7iyjchunzy7togxlll82j9iubn.png)
From the constraint we have
![(\lambda )/(2) + (\lambda )/(2) + (\lambda )/(2) = 24](https://img.qammunity.org/2021/formulas/mathematics/college/fse5fkztf83iuz6qf5rjsrpg82wtsj5guz.png)
=>
![(3 \lambda )/(2) = 24](https://img.qammunity.org/2021/formulas/mathematics/college/8e92ark2ua0arktxe2a5tz316sw6veznfn.png)
=>
![\lambda = 16](https://img.qammunity.org/2021/formulas/mathematics/college/pzjpjqr78r6b0oiimu4zamye87flx1936l.png)
substituting for x, y, z
=> x = 8
=> y = 8
=> z = 8
Hence
![f (8, 8 , 8 ) = 8^2 +8^2 + 8^2](https://img.qammunity.org/2021/formulas/mathematics/college/5isfkqqn7vgs69lonsrvm12816i33haoee.png)
![f (8, 8 , 8 ) = 192](https://img.qammunity.org/2021/formulas/mathematics/college/zhmpye13uel7izg4i349qw93bngjfjh47m.png)