102k views
0 votes
Given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9

User Cookesd
by
7.7k points

1 Answer

0 votes

Answer:

f(g(9)) = 945/16

Explanation:

To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).

g(x) = x + 3/4

f(x) = x² - 4x - 3

f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3

f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3

f(g(x)) = x² - 5/2x + 9/16 + 3 - 3

f(g(x)) = x² - 5/2x + 9/16

Now, put a 9 wherever there is an x in f(g(x)).

f(g(9)) = (9)² - 5/2(9) + 9/16

f(g(9)) = 81 - 5/2(9) + 9/16

f(g(9)) = 81 - 45/2 + 9/16

f(g(9)) = 117/2 + 9/16

f(g(9)) = 945/16

User CarlR
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories