95.4k views
5 votes
Identify the inverse function of f(x) = VX - 2 + 3.

Identify the inverse function of f(x) = VX - 2 + 3.-example-1
User Liana
by
4.4k points

2 Answers

7 votes

Answer:


\boxed{ {f}^( - 1) (x) = {(x - 3)}^(2) + 2}

Option D is the correct option

Explanation:


\mathsf{f(x) = √(x - 2) + 3}

Replace f(x) with y


\mathsf{y = √(x - 2) + 3}

Interchange variables


\mathsf{x = √(y - 2) + 3}


\mathsf{{(x - 3)}^(2) = {( √(y - 2)) }^(2) }


\mathsf{ {(x - 3)}^(2) = y - 2}


\mathsf{ y = {(x - 3)}^(2) + 2}

Replace y with f ⁻¹( x )


\mathsf{ {f}^( - 1) (x) = {(x - 3)}^(2) + 2}

Hope I helped!

Best regards!

User Nam Vu
by
4.8k points
2 votes

Answer:


\huge\boxed{f^(-1)(x) = (x-3)^2+2}

Explanation:


f(x) = √(x-2) + 3

Replace y = f(x)


y = √(x-2) + 3

Exchange x and y


x = √(y-2)+3

Solve for y


x = √(y-2)+3

Subtracting both sides by 3


x - 3 = √(y-2)

Taking square on both sides


(x-3)^2 = y -2

Adding 2 to both sides


y = (x-3)^2+2

Substitute y =
f^(-1)(x)


f^(-1)(x) = (x-3)^2+2

User Edison Augusthy
by
5.0k points