(a) Take the Laplace transform of both sides:
![2y''(t)+ty'(t)-2y(t)=14](https://img.qammunity.org/2021/formulas/mathematics/college/9yk93xke66wnyfda9qjdelrau7gyz49efm.png)
![\implies 2(s^2Y(s)-sy(0)-y'(0))-(Y(s)+sY'(s))-2Y(s)=\frac{14}s](https://img.qammunity.org/2021/formulas/mathematics/college/k74tvvgsers9oirkl3zmto6zha1kmicy44.png)
where the transform of
comes from
![L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)](https://img.qammunity.org/2021/formulas/mathematics/college/bkkbd48mgb4xuf98swdqkqz5zrav56g2um.png)
This yields the linear ODE,
![-sY'(s)+(2s^2-3)Y(s)=\frac{14}s](https://img.qammunity.org/2021/formulas/mathematics/college/zb8wfzg94av2g22btzoz5txgvwp9ody4ey.png)
Divides both sides by
:
![Y'(s)+\frac{3-2s^2}sY(s)=-(14)/(s^2)](https://img.qammunity.org/2021/formulas/mathematics/college/er3z1hjdmtg4j40a9od4ccedw7pswhmp0a.png)
Find the integrating factor:
![\displaystyle\int\frac{3-2s^2}s\,\mathrm ds=3\ln|s|-s^2+C](https://img.qammunity.org/2021/formulas/mathematics/college/vp4z05lgnla41jusk7p2qgyqdyck2kia7w.png)
Multiply both sides of the ODE by
:
![s^3e^(-s^2)Y'(s)+(3s^2-2s^4)e^(-s^2)Y(s)=-14se^(-s^2)](https://img.qammunity.org/2021/formulas/mathematics/college/vtjg88qkmavs9k0qe0xyr50xsu08yrgw3w.png)
The left side condenses into the derivative of a product:
![\left(s^3e^(-s^2)Y(s)\right)'=-14se^(-s^2)](https://img.qammunity.org/2021/formulas/mathematics/college/yvc2uy13f25lxv84e19m1ab3gcbg8s8qnd.png)
Integrate both sides and solve for
:
![s^3e^(-s^2)Y(s)=7e^(-s^2)+C](https://img.qammunity.org/2021/formulas/mathematics/college/zb0qf8lgw58xx92rrb90sgr7uukqzhhpe2.png)
![Y(s)=(7+Ce^(s^2))/(s^3)](https://img.qammunity.org/2021/formulas/mathematics/college/tzisbln947z5tizx2431eshmp5q82zv47g.png)
(b) Taking the inverse transform of both sides gives
![y(t)=\frac{7t^2}2+C\,L^(-1)\left[(e^(s^2))/(s^3)\right]](https://img.qammunity.org/2021/formulas/mathematics/college/4id4m9vck7x7ho2e2wzx9lltwab0wf7ur7.png)
I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that
is one solution to the original ODE.
![y(t)=\frac{7t^2}2\implies y'(t)=7t\implies y''(t)=7](https://img.qammunity.org/2021/formulas/mathematics/college/5fbki53hdcqa55jers6bvmtjg8mgjgm5sp.png)
Substitute these into the ODE to see everything checks out:
![2\cdot7+t\cdot7t-2\cdot\frac{7t^2}2=14](https://img.qammunity.org/2021/formulas/mathematics/college/a1kv7bmcgv27phytcif53invu62ower5t5.png)