97.8k views
0 votes
For the functions f(x) = 4x^4+4x^3-8x^2-13x-5 and g(x) = x+1, find (f/g)(x) and (f/g)(2)

1 Answer

4 votes

Answer:

(f/g)(x) = 4x³ - 8x - 5

(f/g)(2) = 11

Explanation:

f(x) = 4x⁴ + 4x³ - 8x² - 13x - 5

g(x) = x + 1

To find (f/g)(2) first find (f/g)(x)

To find (f/g)(x) factorize f(x) first

That's

f(x) = 4x⁴ + 4x³ - 8x² - 13x - 5

f(x) = ( x + 1)( 4x³ - 8x - 5)

So we have


(f/g)(x) = (( x + 1)( 4x³ - 8x - 5))/(x + 1)

Simplify

We have

(f/g)(x) = 4x³ - 8x - 5

To find (f/g)(2) substitute 2 into (f/g)(x)

That's

(f/g)(2) = 4(2)³ - 8(2) - 5

= 4(8) - 16 - 5

= 32 - 16 - 5

= 11

(f/g)(2) = 11

Hope this helps you

User Izuka
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories