Answer:
![\approx \bold{6544\ in^3/sec}](https://img.qammunity.org/2021/formulas/mathematics/college/4ec07y0pbroqqu8oo37700bem9rtqp8d19.png)
Explanation:
Given:
Rate of change of radius of cylinder:
![(dr)/(dt) = +7\ in/sec](https://img.qammunity.org/2021/formulas/mathematics/college/hpuff05ibu9wah0t8k81q8dpktjpq4cc3u.png)
(This is increasing rate so positive)
Rate of change of height of cylinder:
![(dh)/(dt) = -6\ in/sec](https://img.qammunity.org/2021/formulas/mathematics/college/xfzk7fkffrsg2uioa2ckvuohb4ee9t6f91.png)
(This is decreasing rate so negative)
To find:
Rate of change of volume when r = 20 inches and h = 16 inches.
Solution:
First of all, let us have a look at the formula for Volume:
![V = \pi r^2h](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zbor5vdoitdlwkfr25mn149fmm3ev2f9hg.png)
Differentiating it w.r.to 't':
![(dV)/(dt) = (d)/(dt)(\pi r^2h)](https://img.qammunity.org/2021/formulas/mathematics/college/tm3nfiyu1r04ia2yqpomplceg0p997vy5a.png)
Let us have a look at the formula:
![1.\ (d)/(dx) (C.f(x)) = C(d(f(x)))/(dx) \ \ \ (\text{C is a constant})\\2.\ (d)/(dx) (f(x).g(x)) = f(x)(d)/(dx) (g(x))+g(x)(d)/(dx) (f(x))](https://img.qammunity.org/2021/formulas/mathematics/college/1gsx6es0p1e7ah93kx407mcn17gzc06uy2.png)
![3.\ (dx^n)/(dx) = nx^(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/x0phwcdv1pzivfshyf0ju7d3urs0ng0vy3.png)
Applying the two formula for the above differentiation:
![\Rightarrow (dV)/(dt) = \pi(d)/(dt)( r^2h)\\\Rightarrow (dV)/(dt) = \pi h(d )/(dt)( r^2)+\pi r^2(dh )/(dt)\\\Rightarrow (dV)/(dt) = \pi h* 2r (dr )/(dt)+\pi r^2(dh )/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/avaz349sgs3iwif8tmd0lw5mr5by8jjg7b.png)
Now, putting the values:
![\Rightarrow (dV)/(dt) = \pi * 16* 2* 20 * 7+\pi* 20^2* (-6)\\\Rightarrow (dV)/(dt) = 22 * 16* 2* 20 +3.14* 400* (-6)\\\Rightarrow (dV)/(dt) = 14080 -7536\\\Rightarrow (dV)/(dt) \approx \bold{6544\ in^3/sec}](https://img.qammunity.org/2021/formulas/mathematics/college/bfxo802favbgd5nbrhn99rxftzto5z8ct8.png)
So, the answer is:
![\approx \bold{6544\ in^3/sec}](https://img.qammunity.org/2021/formulas/mathematics/college/4ec07y0pbroqqu8oo37700bem9rtqp8d19.png)