115k views
20 votes
What is the trigonometric ratio for sin Z?

Enter your answer, as a simplified fraction, in the boxes.

What is the trigonometric ratio for sin Z? Enter your answer, as a simplified fraction-example-1

1 Answer

1 vote

Answer:


\large { \purple{ \sf {The \: value \: of \: sin \: Z \: is} \sf (3)/(5) }}

Explanation:


\large{\underline{\underline{\pink{\sf{To \: \: find :-}}}}}


\textsf{The value of Sin Z}


\large{\red{\underline{\textsf{Given :-}}}}

YZ (B) = 32 (which the base of the triangle)

XZ (H) = 40 (which is the hypotenuse of the triangle)


\textsf{ \huge { \underline{ \orange{Solution :-}}}}


\sf{The \: formula \: to \: find} \sin Z = (P)/(H) \\ \textsf{which \: means} \\ \sf \rightarrow (perpendicular)/(hypotenuse)

But here we don't have perpendicular so we use Pythagoras theorem to find perpendicular


{ \sf {(perpendicular)}^(2) + \sf{(base)}^(2) = \sf {(hypotenuse)}^(2) } \\ \sf {(P)}^(2) + \sf {(B)}^(2) = \sf {(H)}^(2)

let here P = P


\sf {(P)}^(2) + {(32)}^(2) = {(40)}^(2) \\ \sf {P}^(2) + 1024 = 1600 \\ \sf {P}^(2) = 1600 - 1024 \\ \sf {P}^(2) = 576 \\ \sf P = √(576) \\ \sf P = 24

Now we to find Sin ZPH


\sf \ \sin Z = (P)/(H) \\ \implies (24)/(40) \\ \implies (6)/(10) \\ \implies (3)/(5)

User Anstarovoyt
by
3.5k points