218k views
1 vote
without actually calculating the cubes find the value of each of the following (-28)^3+(12)^3+(16)^3 ​

User Heena
by
5.7k points

1 Answer

3 votes

Answer:

-16128

Explanation:

This expression can be calculated by algebraic means, whose process is described below:

1)
(-28)^(3)+(12)^(3)+(16)^(3) Given.

2)
(-12-16)^(3) + (12)^(3)+(16)^(3) Definition of addition.

3)
(-12)^(3) + 3\cdot (-12)^(2)\cdot (-16)+3\cdot (-12)\cdot (-16)^(2)+(-16)^(3)+(12)^(3)+(16)^(3) Cubic perfect binomial.

4)
(12)^(3)+[(-1)\cdot (12)]^(3)+(16)^(3) + [(-1)\cdot (16)]^(3)+3 \cdot (-12)^(2)\cdot (-16) + 3\cdot (-12)\cdot (-16)^(2) Commutative property/
(-x)\cdot y = -x\cdot y

5)
(12)^(3) + (-1)^(3)\cdot (12)^(3) + 16^(3) +(-1)^(3)\cdot (16)^(3) + (-3)\cdot [(-12)^(2)\cdot (16) +(-16)^(2)\cdot (12)] Distributive property/
(-x)\cdot y = -x\cdot y/
x^(n)\cdot y^(n) = (x\cdot y)^(n)

6)
(12)^(3) + [-(12)^(3)]+(16)^(3) + [-(16)^(3)]+ (-3)\cdot [(-12)^(2)\cdot (16)+(-16)^(2)\cdot (12)]
(-x)\cdot y = -x\cdot y

7)
(-3)\cdot [(-12)^(2)\cdot (16) + (-16)^(2)\cdot (12)] Existence of the additive inverse/Modulative property for addition.

8)
(-3) \cdot [(12)^(2)\cdot (16)+(16^(2))\cdot (12)]
x^(n)\cdot y^(n) = (x\cdot y)^(n)/
(-x)\cdot (-y) = x\cdot y

9)
(-3)\cdot (12)\cdot (16)\cdot (12+16) Distributive property.

10)
-16128
(-x)\cdot y = -x\cdot y/Definition of sum/Definition of multiplication/Result

User FlasH From Ru
by
5.2k points