143k views
4 votes
List the sides in order from the largest to the smallest. A. XY, YW, WX B. XY, WX, YW C. WX, YW, XY D. WX, XY, YW

List the sides in order from the largest to the smallest. A. XY, YW, WX B. XY, WX-example-1
User DanLebrero
by
3.2k points

2 Answers

2 votes

Based on this information, the correct order of the sides from largest to smallest would be:

D. WX, XY, YW

How to determine the order of the sides in triangle WXY

To determine the order of the sides in triangle WXY based on the given angle measurements, use the angle-side relationship in triangles.

According to this relationship, the largest angle is opposite the longest side, and vice versa.

Given that angle W is 59 degrees, angle X is 39 degrees, and angle Y is 82 degrees, we can conclude the following:

Angle Y is the largest angle (82 degrees), so it is opposite the longest side. WX

Angle X is the smallest angle (39 degrees), so it is opposite the shortest side. YW

Based on this information, the correct order of the sides from largest to smallest would be:

D. WX, XY, YW

Therefore, the correct option is D.

User Brajeshwar
by
3.6k points
1 vote

Answer:

Option (D)

Explanation:

By applying Sine rule in the given triangle WXY,


\frac{\text{SinW}}{\text{XY}}=\frac{\text{SinY}}{\text{XW}}=\frac{\text{SinX}}{\text{WY}}


\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}=\frac{\text{Sin39}}{\text{WY}}


\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}


\frac{\text{XW}}{\text{XY}}=\frac{\text{Sin82}}{\text{Sin59}}

= 1.1489

XW : XY ≈ 1.15 : 1


\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin39}}{\text{WY}}


\frac{\text{XY}}{\text{WY}}=\frac{\text{Sin59}}{\text{Sin39}}


\frac{\text{XY}}{\text{WY}}=(1.36)/(1)


\frac{\text{XY}}{\text{WY}}=((1)/(1))/((1)/(1.36) )


\frac{\text{XY}}{\text{WY}}=(1)/(0.7342)

XY : WY = 1 : 0.7342

XW : XY : WY = 1.15 : 1 : 0.7342

Therefore, WX > XY > WY

Option (D). will be the correct option.

User Iluvcapra
by
3.5k points