Answer:
Therefore, perimeter of the given triangle is 18.300 cm.
Explanation:
Area of the triangle ABC =

10 =

Sin(B) =

B =

B = 48.08°
By applying Cosine rule in the given triangle,
(AC)² = (AB)² + (BC)²-2(AB)(BC)CosB
(AC)² = (3.2)² + (8.4)² - 2(3.2)(8.4)Cos(48.08)°
(AC)² = 10.24 + 70.56 - 35.9166
(AC)² = 44.88
AC =

AC = 6.6995 cm
Perimeter of the ΔABC = m(AB) + m(BC) + m(AC)
= 3.200 + 8.400 + 6.6995
= 18.2995
≈ 18.300 cm
Therefore, perimeter of the given triangle is 18.300 cm