Answer:
The probability mass function that you never win
=
![((999999)/(1000000))^x](https://img.qammunity.org/2021/formulas/mathematics/college/gmyt81v714nmb4uoe3ev4gu2j7cyqzwpo3.png)
Explanation:
Given that;
the winning chance of a weekly local lottery =
=
![(1)/(1000000)](https://img.qammunity.org/2021/formulas/mathematics/college/phjelqcicw395rm4bewhygcy74w7d4q6hj.png)
The probability of losing = 1 - probability of winning (winning chance)
The probability of losing =
![1- (1)/(1000000)](https://img.qammunity.org/2021/formulas/mathematics/college/l90uo3pd772ogas8tfrsi57svm72axjifm.png)
The probability of losing =
![(999999)/(1000000)](https://img.qammunity.org/2021/formulas/mathematics/college/122ezefd7aykr2ijyrxjp69zntv54dv3pb.png)
The probability mass function that you never win
=
![((1)/(10^6) )^0 ( (999999)/(1000000))^x](https://img.qammunity.org/2021/formulas/mathematics/college/a82n380n3m445uqvi4ke27rjhpfqt45npf.png)
The probability mass function that you never win
=
![((999999)/(1000000))^x](https://img.qammunity.org/2021/formulas/mathematics/college/gmyt81v714nmb4uoe3ev4gu2j7cyqzwpo3.png)