Company a samples 16 workers, and their average time with the company is 5.2 years with a standard deviation of 1.1. Company b samples 21 workers and their average time with the company is 4.6 years with a standard deviation 4.6 years
The populations are normally distributed. Determine the:
Hypothesis in symbolic form?
Determine the value of the test statistic?
Find the critical value or value?
determine if you should reject null hypothesis or fail to reject?
write a conclusion addressing the original claim?
Answer:
Explanation:
GIven that :
Company A
Sample size n₁ = 16 workers
Mean
₁ = 5.2
Standard deviation
₁ = 1.1
Company B
Sample size n₂ = 21 workers
Mean
₂ = 4.6
Standard deviation
₂ = 4.6
The null hypothesis and the alternative hypothesis can be computed as follows:


The value of the test statistics can be determined by using the formula:

where;






Recall:






t = 0.50917
degree of freedom df = ( n₁ + n₂ - 2 )
degree of freedom df = (16 + 21 - 2)
degree of freedom df = 35
Using Level of significance ∝ = 0.05, From t-calculator , given that t = 0.50917 and degree of freedom df = 35
p - value = 0.3069
The critical value
=
= 1.6895
Decision Rule: Reject the null hypothesis if the test statistics is greater than the critical value.
Conclusion: We do not reject the null hypothesis because, the test statistics is lesser than the critical value, therefore we conclude that there is no sufficient information that the claim that company a retains it workers longer than more than company b.