Answer:
![Molar\ solubility=2.14x10^(-4)M](https://img.qammunity.org/2021/formulas/chemistry/college/e8ky9fj2wg44kj3splnxzyck58kbzjtnkf.png)
![Ksp=3.91x10^(-11)](https://img.qammunity.org/2021/formulas/chemistry/college/v1rp0qj4d9lu16zxe5qd4c61ogiby4fuu0.png)
Step-by-step explanation:
Hello,
In this case, given that 0.0167 grams of calcium fluoride in 1 L of solution form a saturated one, we can notice it is the solubility, therefore, the molar solubility is computed by using the molar mass of calcium fluoride (78.1 g/mol):
![Molar\ solubility=(0.0167gCaF_2)/(1L)*(1molCaF_2)/(78.1gCaF_2) \\\\Molar\ solubility=2.14x10^(-4)M](https://img.qammunity.org/2021/formulas/chemistry/college/oee7t4rmasupisqgmesww7efkmwmswksfp.png)
Next, since dissociation equation for calcium fluoride is:
![CaF_2(s)\rightarrow Ca^(2+)(aq)+2F^-(aq)](https://img.qammunity.org/2021/formulas/chemistry/college/y327uhqvopd317on4yom9cm177kh6h73sm.png)
The equilibrium expression is:
![Ksp=[Ca^(2+)][F^-]^2](https://img.qammunity.org/2021/formulas/chemistry/college/zzmc07yep1karrfpe89mfohuprmzyybi82.png)
We can compute the solubility product by remembering that the concentration of both calcium and fluoride ions equals the molar solubility, thereby:
![Ksp=(2.14x10^(-4))(2*2.14x10^(-4))^2\\\\Ksp=3.91x10^(-11)](https://img.qammunity.org/2021/formulas/chemistry/college/lyif93tcnjlmtuimtu2esmaf2nl3oznrob.png)
Regards.