223k views
4 votes
Prove that : ( sin 4 theta + cos 4 theta )= 1-2 sin square theta cos square theta​

1 Answer

3 votes

Answer:

From sin²θ + cos²θ = 1, we have;

sin⁴θ + cos⁴θ = 1 - 2·sin²θ·cos²θ

Explanation:

The given equation is (sin⁴θ + cos⁴θ) = 1 - 2 sin²θ·cos²θ

We have;

(sin⁴θ + cos⁴θ) = 1 - 2 sin²θ·cos²θ gives;

(sin⁴θ + cos⁴θ) + 2 sin²θ·cos²θ= 1

Which is equivalent to sin⁴θ + 2 sin²θ·cos²θ +cos⁴θ = 1

From which we can get;

(sin²θ + cos²θ)·(sin²θ + cos²θ) = 1

Given that sin²θ + cos²θ = 1

Therefore;

1 × 1 = 1

To get to the initial equation in the question, we have;

sin²θ + cos²θ = 1

(sin²θ + cos²θ) × (sin²θ + cos²θ) = 1

(sin⁴θ + sin²θ·cos²θ + sin²θ·cos²θ + cos⁴θ = 1

∴ sin⁴θ + cos⁴θ = 1 - sin²θ·cos²θ + sin²θ·cos²θ = 1 - 2·sin²θ·cos²θ

Therefore;

sin⁴θ + cos⁴θ = 1 - 2·sin²θ·cos²θ.

User Pablo Claus
by
4.9k points