129k views
2 votes
Given the geometric sequence where a1 = −1 and the common ratio is 7, what is the domain for n? A. All integers B. All integers where n ≥ −1 C. All integers where n ≥ 0 D. All integers where n ≥ 1

2 Answers

5 votes
D.) would be the correct answer
User Fian
by
5.0k points
7 votes

Answer:

D

Explanation:

Hello, This is a geometric sequence where the first term is
a_1=-1.

It means that the sequence is
(a_n)_(n\geq 1).

In other words, as the common ratio is 7 the sequence is defined by


a_1=-1


a_(n+1)=a_n\cdot 7 \ \ \text{ for n }\geq 1

For instance, we can estimate the first terms:


a_1=-1\\\\a_2=7a_1=-7\\\\a_3=7a_2=-49

And we know that we can even find a formula for the
n^(th) term of the sequence by:


a_n=a_1\cdot 7^(n-1)=-7^(n-1)

Now, to answer the question, the domain for n is all integers where
n\geq 1.

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

User Estiny
by
4.6k points