Answer:
![3 -\sqrt[2]3](https://img.qammunity.org/2021/formulas/mathematics/high-school/sa7fdx7h5rhyhgeiq8hihofncjuwvasajs.png)
Explanation:
Given
![\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/9d8km0o6fs0k4yx2pzxe6hiu9fk35aokv7.png)
Required
Simplify
Rewrite the given expression in index form
![\frac{2 * 9 ^(1)/(3)}{1 + 3^{(1)/(3)} + 9^{(1)/(3)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/x0n3669aqxdz7st0qo145w960v6bq2dmks.png)
Express 9 as 3²
![\frac{2 * 3^2^*^(1)/(3)}{1 + 3^{(1)/(3)} + 3^2^*^{(1)/(3)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/dhqitpiacv7v5iwlxuc6bgbkg653epq3y5.png)
![\frac{2 * 3^(2)/(3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/yvs5a4jfj3585gs8nyslbn694ytunblpuu.png)
Multiply the numerator and denominator by
![1 - 3^{(1)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/jfxh65ppk4rsilxmomvftgvfup9ufznzab.png)
![\frac{2 * 3^(2)/(3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)}} * \frac{1 - 3^{(1)/(3)}}{1 - 3^{(1)/(3)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/faqx4hjcqb2oghsfuumdhpwc29ow5sxdw4.png)
![\frac{2 (3^(2)/(3)) (1 - 3^{(1)/(3)})}{(1 + 3^{(1)/(3)} + 3^{(2)/(3)})(1 - 3^{(1)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ffymdcoxc3yrnq7i85whn490kdeq6yn6yr.png)
Open the bracket
![\frac{2 (3^(2)/(3)) -2 (3^(2)/(3))(3^{(1)/(3)})}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/fplxureifmn3zuqeyv4omvbey9ha3egojw.png)
Simplify the Numerator using Laws of Indices
![\frac{2 (3^(2)/(3)) -2 (3^(2+1)/(3))}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/37557tc0vtguvgeef4p065qn4frilh0pyi.png)
Further Simplify
![\frac{2 (3^(2)/(3)) -2 (3^(3)/(3))}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/1jowkq772bu6v67oitdpzc17cvk4e6joqr.png)
![\frac{2 (3^(2)/(3)) -2 (3^1)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/xpb4777pbxwj45u49ffkzaqi6xpojs3p1b.png)
![\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/8daok8krvk8f4w1l4jk9v9i4p7u0hiwtbi.png)
Simplify the denominator
![\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - (3^{(1)/(3)})(3^{(1)/(3)}) - (3^{(1)/(3)})(3^{(2)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/oc1oaa4jrw883ngh1ewig6z1mu2iogyf0p.png)
Further Simplify Using Laws of Indices
![\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - (3^{(1+1)/(3)}) - (3^{(1+2)/(3)})}](https://img.qammunity.org/2021/formulas/mathematics/high-school/gpsmrdd9x7n4ehfy2i8cv1aki0hi1zq4yj.png)
![\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3^{(3)/(3)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/sizauei07h5omwq4lgnglw9hcbmzkpr8mb.png)
![\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3^1}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/o39ox1yha364iwuti1hh05ecd8yi8c3vrv.png)
![\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/xrq0dtwpf626udiw7g8dt49cxctegpyekl.png)
Collect Like Terms
![\frac{2 (3^(2)/(3)) -2 (3)}{1 - 3+ 3^{(1)/(3)} - 3^{(1)/(3)}+ 3^{(2)/(3)} - 3^{(2)/(3)} }}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6ztaehkk7wvnlq96ejo7l68v8emvwpzh5e.png)
Group Like Terms for Clarity
![\frac{2 (3^(2)/(3)) -2 (3)}{(1 - 3) + (3^{(1)/(3)} - 3^{(1)/(3)}) + (3^{(2)/(3)} - 3^{(2)/(3)} )}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/oskcfpussqlkcar77967cj88wy7dd24wea.png)
![(2 (3^(2)/(3)) -2 (3))/((- 2)+ (0) + (0))}](https://img.qammunity.org/2021/formulas/mathematics/high-school/l4on69ya0zlwv4h342lpp0786e4085dt5l.png)
![(2 (3^(2)/(3)) -2 (3))/(-2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/pfdd9l8waey9shxa2gssuf80wd9v3i2lst.png)
Divide the fraction
![-(3^(2)/(3)) + (3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vy1gxtyguqaeldgsmpsxiuo1n6zjstrg8h.png)
Reorder the above expression
![3 -3^(2)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/80ulf3318serhimlep6jo4i7j84wft1802.png)
The expression can be represented as
![3 -\sqrt[2]3](https://img.qammunity.org/2021/formulas/mathematics/high-school/sa7fdx7h5rhyhgeiq8hihofncjuwvasajs.png)
Hence;
when simplified is equivalent to
![3 -\sqrt[2]3](https://img.qammunity.org/2021/formulas/mathematics/high-school/sa7fdx7h5rhyhgeiq8hihofncjuwvasajs.png)