11.4k views
3 votes
Simplify
$(2\sqrt[3]9)/(1 + \sqrt[3]3 + \sqrt[3]9).$ $\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$

1 Answer

5 votes

Answer:


3 -\sqrt[2]3

Explanation:

Given


\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}}

Required

Simplify

Rewrite the given expression in index form


\frac{2 * 9 ^(1)/(3)}{1 + 3^{(1)/(3)} + 9^{(1)/(3)}}

Express 9 as 3²


\frac{2 * 3^2^*^(1)/(3)}{1 + 3^{(1)/(3)} + 3^2^*^{(1)/(3)}}


\frac{2 * 3^(2)/(3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)}}

Multiply the numerator and denominator by
1 - 3^{(1)/(3)}


\frac{2 * 3^(2)/(3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)}} * \frac{1 - 3^{(1)/(3)}}{1 - 3^{(1)/(3)}}


\frac{2 (3^(2)/(3)) (1 - 3^{(1)/(3)})}{(1 + 3^{(1)/(3)} + 3^{(2)/(3)})(1 - 3^{(1)/(3)})}

Open the bracket


\frac{2 (3^(2)/(3)) -2 (3^(2)/(3))(3^{(1)/(3)})}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}

Simplify the Numerator using Laws of Indices


\frac{2 (3^(2)/(3)) -2 (3^(2+1)/(3))}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}

Further Simplify


\frac{2 (3^(2)/(3)) -2 (3^(3)/(3))}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}


\frac{2 (3^(2)/(3)) -2 (3^1)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}

Simplify the denominator


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - (3^{(1)/(3)})(3^{(1)/(3)}) - (3^{(1)/(3)})(3^{(2)/(3)})}

Further Simplify Using Laws of Indices


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - (3^{(1+1)/(3)}) - (3^{(1+2)/(3)})}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3^{(3)/(3)}}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3^1}}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3}}

Collect Like Terms


\frac{2 (3^(2)/(3)) -2 (3)}{1 - 3+ 3^{(1)/(3)} - 3^{(1)/(3)}+ 3^{(2)/(3)} - 3^{(2)/(3)} }}

Group Like Terms for Clarity


\frac{2 (3^(2)/(3)) -2 (3)}{(1 - 3) + (3^{(1)/(3)} - 3^{(1)/(3)}) + (3^{(2)/(3)} - 3^{(2)/(3)} )}}


(2 (3^(2)/(3)) -2 (3))/((- 2)+ (0) + (0))}


(2 (3^(2)/(3)) -2 (3))/(-2)}

Divide the fraction


-(3^(2)/(3)) + (3)

Reorder the above expression


3 -3^(2)/(3)

The expression can be represented as


3 -\sqrt[2]3

Hence;


\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}} when simplified is equivalent to
3 -\sqrt[2]3

User Imdad
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories