11.4k views
3 votes
Simplify
$(2\sqrt[3]9)/(1 + \sqrt[3]3 + \sqrt[3]9).$ $\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$

1 Answer

5 votes

Answer:


3 -\sqrt[2]3

Explanation:

Given


\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}}

Required

Simplify

Rewrite the given expression in index form


\frac{2 * 9 ^(1)/(3)}{1 + 3^{(1)/(3)} + 9^{(1)/(3)}}

Express 9 as 3²


\frac{2 * 3^2^*^(1)/(3)}{1 + 3^{(1)/(3)} + 3^2^*^{(1)/(3)}}


\frac{2 * 3^(2)/(3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)}}

Multiply the numerator and denominator by
1 - 3^{(1)/(3)}


\frac{2 * 3^(2)/(3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)}} * \frac{1 - 3^{(1)/(3)}}{1 - 3^{(1)/(3)}}


\frac{2 (3^(2)/(3)) (1 - 3^{(1)/(3)})}{(1 + 3^{(1)/(3)} + 3^{(2)/(3)})(1 - 3^{(1)/(3)})}

Open the bracket


\frac{2 (3^(2)/(3)) -2 (3^(2)/(3))(3^{(1)/(3)})}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}

Simplify the Numerator using Laws of Indices


\frac{2 (3^(2)/(3)) -2 (3^(2+1)/(3))}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}

Further Simplify


\frac{2 (3^(2)/(3)) -2 (3^(3)/(3))}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}


\frac{2 (3^(2)/(3)) -2 (3^1)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)}(1 + 3^{(1)/(3)} + 3^{(2)/(3)})}

Simplify the denominator


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - (3^{(1)/(3)})(3^{(1)/(3)}) - (3^{(1)/(3)})(3^{(2)/(3)})}

Further Simplify Using Laws of Indices


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - (3^{(1+1)/(3)}) - (3^{(1+2)/(3)})}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3^{(3)/(3)}}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3^1}}


\frac{2 (3^(2)/(3)) -2 (3)}{1 + 3^{(1)/(3)} + 3^{(2)/(3)} - 3^{(1)/(3)} - 3^{(2)/(3)} - 3}}

Collect Like Terms


\frac{2 (3^(2)/(3)) -2 (3)}{1 - 3+ 3^{(1)/(3)} - 3^{(1)/(3)}+ 3^{(2)/(3)} - 3^{(2)/(3)} }}

Group Like Terms for Clarity


\frac{2 (3^(2)/(3)) -2 (3)}{(1 - 3) + (3^{(1)/(3)} - 3^{(1)/(3)}) + (3^{(2)/(3)} - 3^{(2)/(3)} )}}


(2 (3^(2)/(3)) -2 (3))/((- 2)+ (0) + (0))}


(2 (3^(2)/(3)) -2 (3))/(-2)}

Divide the fraction


-(3^(2)/(3)) + (3)

Reorder the above expression


3 -3^(2)/(3)

The expression can be represented as


3 -\sqrt[2]3

Hence;


\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}} when simplified is equivalent to
3 -\sqrt[2]3

User Imdad
by
4.4k points