Answer:
![\sf x=(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/stlfbpyx9enxh6wtgc3qnci647x73wim5y.png)
Explanation:
Rewrite expression with bases of 4.
![\sf{4^{(3)/(4) }} * \sf({4^(1)/(2) )^x =(4^2)^{(2)/(5) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/hdo3y1qnageyuiycmv9ekmfgq4snma6gaq.png)
Apply law of exponents, when bases are same for exponents in multiplication, add the exponents. When a base with an exponent has a whole exponent, then multiply the two exponents.
![\sf{4^{(3)/(4) }} * \sf{4^{(1)/(2) x}=4^{(4)/(5) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/az98mlspd15nfi858tclmggyez6xef2l9d.png)
![\sf{4^{(3)/(4) +(1)/(2) x}=4^{(4)/(5) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/u7p6x0qnzmzs8uzt6etmudcbaax9u9v6ui.png)
Cancel same bases.
![\sf (3)/(4) +(1)/(2) x=(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uvy9nq138evlgi19058j2egfgerw18uh92.png)
Subtract 3/4 from both sides.
![\sf (1)/(2) x=(1)/(20)](https://img.qammunity.org/2021/formulas/mathematics/high-school/me9k1yfqkxu1r3dva8skcsenvyubaa2n94.png)
Multiply both sides by 2.
![\sf x=(1)/(10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/stlfbpyx9enxh6wtgc3qnci647x73wim5y.png)