Answer:
Area of the triangle WXY = 111.8 mm²
Explanation:
By applying Sine rule in the given triangle WXY,
![\frac{\text{SinW}}{\text{XY}}=\frac{\text{SinX}}{\text{WY}}=\frac{\text{SinY}}{\text{WX}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/i007m5xfb2ow3863fcptfdwli9smoh9gai.png)
Since m∠W + m∠X + m∠Y = 180°
m∠W + 26° + 130° = 180°
m∠W = 180° - 156°
m∠W = 24°
![\frac{\text{Sin24}}{\text{XY}}=\frac{\text{Sin130}}{31}=\frac{\text{Sin26}}{\text{WX}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/vpryyrocfdd37v0hxbjglb2sk95dtecpge.png)
![\frac{\text{Sin24}}{\text{XY}}=\frac{\text{Sin130}}{31}](https://img.qammunity.org/2021/formulas/mathematics/high-school/rk68fvr8amkiwrp36q5rxb03cei7fsstqc.png)
XY =
![\frac{31* (\text{Sin24})}{\text{Sin130}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/8snlddf4lp91x9qbodaefb8avq4zh56hdu.png)
XY = 16.4597
≈ 16.4597 mm
Area of the triangle =
![(1)/(2)(\text{XY})(\text{WY})\text{SinY}](https://img.qammunity.org/2021/formulas/mathematics/high-school/u46te9j4y7aff5ytf7t9n7bsohr1898yrm.png)
=
![(1)/(2)(16.4597)(31)\text{Sin26}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ahz2kzne6sx2332hezpkctgqllmkvyi42f.png)
= 111.83 mm²
≈ 111.8 mm²
Therefore, area of the triangle WXY = 111.8 mm²