69.6k views
5 votes
1. an alloy contains zinc and copper in the ratio of 7:9 find weight of copper of it had 31.5 kgs of zinc.

2. compare the following ratios

i) 2:3 and 4:5
ii) 11:19 and 19:21
iii) ½ : ⅓ and ⅓ : ¼
iv ) 1⅕ : 1⅓ and ⅖ : 3/2

v) if a : b = 6:5 and b:c = 10:9, find a:c

vi) if x : y = ⅙:⅛ and y : z = ⅛: ⅒, find X : z

sorry many questions​

User Stamster
by
4.4k points

1 Answer

4 votes

Answer:

Explanation:

Question (1). An alloy contains zinc and copper in the ratio of 7 : 9.

If the weight of an alloy = x kgs

Then weight of copper =
(9)/(7+9)* (x)

=
(9)/(16)* (x)

And the weight of zinc =
(7)/(7+9)* (x)

=
(7)/(16)* (x)

If the weight of zinc = 31.5 kg

31.5 =
(7)/(16)* (x)

x =
(16* 31.5)/(7)

x = 72 kgs

Therefore, weight of copper =
(9)/(16)* (72)

= 40.5 kgs

2). i). 2 : 3 =
(2)/(3)

4 : 5 =
(4)/(5)

Now we will equalize the denominators of each fraction to compare the ratios.


(2)/(3)* (5)/(5) =
(10)/(15)


(4)/(5)* (3)/(3)=(12)/(15)

Since,
(12)/(15)>(10)/(15)

Therefore, 4 : 5 > 2 : 3

ii). 11 : 19 =
(11)/(19)

19 : 21 =
(19)/(21)

By equalizing denominators of the given fractions,


(11)/(19)* (21)/(21)=(231)/(399)

And
(19)/(21)* (19)/(19)=(361)/(399)

Since,
(361)/(399)>(231)/(399)

Therefore, 19 : 21 > 11 : 19

iii).
(1)/(2):(1)/(3)=(1)/(2)* (3)/(1)


=(3)/(2)


(1)/(3):(1)/(4)=(1)/(3)* (4)/(1)

=
(4)/(3)

Now we equalize the denominators of the fractions,


(3)/(2)* (3)/(3)=(9)/(6)

And
(4)/(3)* (2)/(2)=(8)/(6)

Since
(9)/(6)>(8)/(6)

Therefore,
(1)/(2):(1)/(3)>(1)/(3):(1)/(4) will be the answer.

IV).
1(1)/(5):1(1)/(3)=(6)/(5):(4)/(3)


=(6)/(5)* (3)/(4)


=(18)/(20)


=(9)/(10)

Similarly,
(2)/(5):(3)/(2)=(2)/(5)* (2)/(3)


=(4)/(15)

By equalizing the denominators,


(9)/(10)* (30)/(30)=(270)/(300)

Similarly,
(4)/(15)* (20)/(20)=(80)/(300)

Since
(270)/(300)>(80)/(300)

Therefore,
1(1)/(5):1(1)/(3)>(2)/(5):(3)/(2)

V). If a : b = 6 : 5


(a)/(b)=(6)/(5)


=(6)/(5)* (2)/(2)


=(12)/(10)

And b : c = 10 : 9


(b)/(c)=(10)/(9)

Since a : b = 12 : 10

And b : c = 10 : 9

Since b = 10 is common in both the ratios,

Therefore, combined form of the ratios will be,

a : b : c = 12 : 10 : 9

User Varun A M
by
4.2k points