67.1k views
1 vote
Verify the trigonometric identity: tan(2π - x) = tan(-x)

User Tsingyi
by
5.0k points

2 Answers

3 votes

Answer:


\boxed{ \sf {view \: explanation}}

Explanation:


\Rightarrow \sf tan ( 2\pi - x)=tan(-x)


\sf Apply \ distributive \ law.


\Rightarrow \sf tan (2\pi) + tan (-x) =tan(-x)


\sf Apply : tan(2\pi) =0


\Rightarrow \sf 0 + tan (-x) =tan(-x)


\Rightarrow \sf tan (-x) =tan(-x)


\sf Hence \ verified.

User Workhardcc
by
4.2k points
6 votes

Answer:

See Below

Explanation:

Taking Right Hand Side to verify the identity:

tan ( 2π - x)

Resolving Parenthesis

tan 2π + tan (-x)

We know that tan 2π = 0

0 + tan (-x)

=> tan(-x) = Left Hand Side

Hence Proved

User DarkSuniuM
by
5.0k points