Answer:
![\large \boxed{\sf \ \ (8)/(7) \ \ }](https://img.qammunity.org/2021/formulas/mathematics/high-school/7rlw1kjqlp54v40omzjhq964egzsamvuc5.png)
Explanation:
Hello, please consider the following.
The solutions are, for a positive discriminant:
![(-b\pm√(\Delta))/(2a) \ \text{ where } \Delta=b^2-4ac](https://img.qammunity.org/2021/formulas/mathematics/high-school/rl4m6fx6t63y14hkqcgse6ig1ptj478pnh.png)
Here, we have a = -21, b = -11, c = 40, so it gives:
![\Delta =b^2-4ac=11^2+4*21*40=121+3360=3481=59^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/k8xhaavxr2aha0lc494ax5mggmq5xusrei.png)
So, we have two solutions:
![x_1=(11-59)/(-42)=(48)/(42)=(6*8)/(6*7)=(8)/(7) \\\\x_2=(11+59)/(-42)=(70)/(-42)=-(14*5)/(14*3)=-(5)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/s30hqxgjnqe0q68hoz5c4u2gknl2g77o8l.png)
We only want x > 0 so the solution is
![(8)/(7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sn3puxijzul1tc12xnvpix9k2xnzzpyq4e.png)
Hope this helps.
Do not hesitate if you need further explanation.
Thank you