Explanation:
- all of the chosen balls are white
result of the die roll is
![i, \quad i \in\{1,2,3,4,5,6\}](https://img.qammunity.org/2021/formulas/mathematics/high-school/z2gnh5k27kbu01kr2xdl3fpsc29ebl1gab.png)
Probabilities:
since the die is fair:
If the die rolls
we choose a combination of
balls, among 10 black and five white balls, therefore
\[ \begin{array}{c}
P\left(A \mid E_{1}\right)=\frac{\left(\begin{array}{c} 5 \\
1 \end{array}\right)}{\left(\begin{array}{c} 15 \\ 1 \end{array}\right)}=\frac{5}{15}=\frac{1}{3} \\ P\left(A \mid E_{2}\right)=\frac{\left(\begin{array}{c} 5 \\ 2 \end{array}\right)}{\left(\begin{array}{c} 15 \\ 2
\end{array}\right)}=\frac{10}{105}=\frac{2}{21} \\
P\left(A \mid E_{3}\right)=\frac{\left(\begin{array}{c} 5 \\ 3
\end{array}\right)}{\left(\begin{array}{c} 15 \\ 3
\end{array}\right)}=\frac{10}{455}=\frac{2}{91} \\
P\left(A \mid E_{4}\right)=\frac{\left(\begin{array}{c} 5 \\ 4
\end{array}\right)}{\left(\begin{array}{c} 15 \\ 4
\end{array}\right)}=\frac{1}{273} \\
P\left(A \mid E_{5}\right)=\frac{\left(\begin{array}{c} 5 \\ 5
\end{array}\right)}{\left(\begin{array}{c} 15 \\ 5
\end{array}\right)}=\frac{1}{3003} \\
P\left(A \mid E_{6}\right)=\frac{\left(\begin{array}{c} 5 \\ 6
\end{array}\right)}{\left(\begin{array}{c} 15 \\ 6
\end{array}\right)}=0
\end{array} \]