Answer: E(X) = 4
V(X) =
![(16)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tg5h6aop0d6b66yw4ywek5ehijl9okj5s9.png)
Step-by-step explanation: An uniform distribution is a random variable X restricted to a finite interval [a,b] and has a constant function f(x) over this interval, i.e., the function is of form:
f(x) =
The mean or expectation of an unifrom distribution is:
E(X) =
![\int\limits^b_a {x.f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/knmh0xbjiz3jaalvn6l0o3ywklzmxa4mn9.png)
For the density function in interval [0,8], expectation value is:
E(X) =
![\int\limits^8_0 {x.((1)/(8-0) )} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ebwqm071vnijyt737bhzvjktc18sj48tut.png)
E(X) =
![\int\limits^8_0 {(x)/(8) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ml3k8f30ctrg20mjcsq7xo36g8en0lal7w.png)
E(X) =
![(1)/(8). \int\limits^8_0 {x} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/3huoct6zo7nwui05e17a633dkn63rj95hw.png)
E(X) =
![(1)/(8).((x^(2))/(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/92jeugbvrdgv6s57hmrf1uu1i5vqivhr9o.png)
E(X) =
![(1)/(8) ((8^(2))/(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/otwb7ucgnm3nkutg9oomwy6xwguqnwfivl.png)
E(X) = 4
Variance of a probability distribution can be written as:
V(X) =
![E(X^(2)) - [E(X)]^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/74mvm0au1mq2yezx2dc091r7xgz47bdx02.png)
For uniform distribution in interval [0,8]:
V(X) =
![\int\limits^b_a {x^(2).(1)/(8-0) } \, dx - ((8+0)/(2))^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/w658uvzq4ufwm1kbl5563kkvu5oqlr2v0f.png)
V(X) =
![(1)/(8) \int\limits^8_0 {x^(2)} \, dx - 4^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/l2g022g8g9ve9039ilyils2ps74p2wos6u.png)
V(X) =
![(1)/(8) ((x^(3))/(3) ) - 16](https://img.qammunity.org/2021/formulas/mathematics/college/vp0q225hldkkynarb5s9og9wk4945t11k8.png)
V(X) =
![(1)/(8) ((8^(3))/(3) ) - 16](https://img.qammunity.org/2021/formulas/mathematics/college/o3f09msuk7eznjlo18c2g1uy7xelsaiufd.png)
V(X) =
- 16
V(X) =
![(16)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tg5h6aop0d6b66yw4ywek5ehijl9okj5s9.png)
The mean and variance are 4 and 16/3, respectively