Answer:
![Side\ B = 6.0](https://img.qammunity.org/2021/formulas/mathematics/high-school/3m5sndlnypcoelys7335q3uz496xec2w72.png)
![\alpha = 56.3](https://img.qammunity.org/2021/formulas/mathematics/high-school/79h18iq50fnda44ot8dsthgtn27bom5u5s.png)
![\theta = 93.7](https://img.qammunity.org/2021/formulas/mathematics/high-school/5cfhi1yw7249jtpkpltmp6tl39p6m51677.png)
Explanation:
Given
Let the three sides be represented with A, B, C
Let the angles be represented with
![\alpha, \beta, \theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/fqa6hab6gjn5mcp5mg1861ibifsoxdhk7k.png)
[See Attachment for Triangle]
![A = 10cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/zbcp65m34wa3mfp4o5jmqlo4dts1617hpf.png)
![C = 12cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/daj4zm5zcswt7wy30tqyvkjdf4i7k0dgr2.png)
![\beta = 30](https://img.qammunity.org/2021/formulas/mathematics/high-school/562oetaybzrj4b2ta3yv1vk2a98t4f81b5.png)
What the question is to calculate the third length (Side B) and the other 2 angles (
)
Solving for Side B;
When two angles of a triangle are known, the third side is calculated as thus;
![B^2 = A^2 + C^2 - 2ABCos\beta](https://img.qammunity.org/2021/formulas/mathematics/high-school/5bfxzzff77b8xivtbenmtxlzsvjcwdoumq.png)
Substitute:
,
;
![\beta = 30](https://img.qammunity.org/2021/formulas/mathematics/high-school/562oetaybzrj4b2ta3yv1vk2a98t4f81b5.png)
![B^2 = 10^2 + 12^2 - 2 * 10 * 12 *Cos30](https://img.qammunity.org/2021/formulas/mathematics/high-school/ulkxewtxja4k7uw4q4cdjj24luxk1cu29t.png)
![B^2 = 100 + 144 - 240*0.86602540378](https://img.qammunity.org/2021/formulas/mathematics/high-school/elhae6mxkeuxn7vq8wah94fgo2tbw609sl.png)
![B^2 = 100 + 144 - 207.846096907](https://img.qammunity.org/2021/formulas/mathematics/high-school/stn3b2a2md7twk71d14g4n5nkwkfctwtzl.png)
![B^2 = 36.153903093](https://img.qammunity.org/2021/formulas/mathematics/high-school/n4za22h03rybc93flliomfo21gylb4gloc.png)
Take Square root of both sides
![√(B^2) = √(36.153903093)](https://img.qammunity.org/2021/formulas/mathematics/high-school/iygdrwjz0ua5ewrs2cktt112ip26fn4lau.png)
![B = √(36.153903093)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yg21gl11x79cuwkz4rxgz8icfptdfd8d39.png)
![B = 6.0128115797](https://img.qammunity.org/2021/formulas/mathematics/high-school/3ma2eujt6l6ijjcl90z8es9fc8dupi1z24.png)
(Approximated)
Calculating Angle
![\alpha](https://img.qammunity.org/2021/formulas/physics/high-school/hnta6o297p6x6k4chhffnl4rkouajc67r4.png)
![A^2 = B^2 + C^2 - 2BCCos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/d2kh20txqyfbm0kwonhifbm78k04c0l8xj.png)
Substitute:
,
;
![B = 6](https://img.qammunity.org/2021/formulas/mathematics/high-school/a8k8i6o4mnqz9xabca43hzo5od5977il5a.png)
![10^2 = 6^2 + 12^2 - 2 * 6 * 12 *Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/dofiszm2kp72ttzv1kqvtm0dvxiq2q9orc.png)
![100 = 36 + 144 - 144 *Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/tljsw9y0krb15r75808d8f13miaiphtl0a.png)
![100 = 36 + 144 - 144 *Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/tljsw9y0krb15r75808d8f13miaiphtl0a.png)
![100 = 180 - 144 *Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/w5vtui5epqem13ziqvqlxtxaizvy4nd1x1.png)
Subtract 180 from both sides
![100 - 180 = 180 - 180 - 144 *Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/560uqrtyrr535a51xsvzanitj8zrjwu4e2.png)
![-80 = - 144 *Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/5dx9spyd1ry6hsq25m7f9h0d1cyybphj7d.png)
Divide both sides by -144
![(-80)/(-144) = (- 144 *Cos\alpha)/(-144)](https://img.qammunity.org/2021/formulas/mathematics/high-school/54qgvo8rza09y625x4czl75wn928nmru2h.png)
![(-80)/(-144) = Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/aa0ejzb7xjqvnpzrxzzrhab1r1ha5pf4mw.png)
![0.5555556 = Cos\alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/ro3qodxwnvsfxbpnsrkp0r8o1f9n7efgy3.png)
Take arccos of both sides
![Cos^(-1)(0.5555556) = Cos^(-1)(Cos\alpha)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6mgrrons35jbur094pg74tlyt8dkuu0nfk.png)
![Cos^(-1)(0.5555556) = \alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/pby940ujn21nip33g4944ncr8glezxpu4a.png)
![56.25098078 = \alpha](https://img.qammunity.org/2021/formulas/mathematics/high-school/y3pt08bff0j6q1kmc0mb5i2nw5dt7zx4ep.png)
(Approximated)
Calculating
![\theta](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xa55iai8ybj0afnpxzra0ba7b2i6zcastf.png)
Sum of angles in a triangle = 180
Hence;
![\alpha + \beta + \theta = 180](https://img.qammunity.org/2021/formulas/mathematics/high-school/tt4f3ykweop108y5t93iwp5oryn878lmnm.png)
![30 + 56.3 + \theta = 180](https://img.qammunity.org/2021/formulas/mathematics/high-school/xsc7zf2hwynlm2qc44tr3wajb6bswb8iv7.png)
![86.3 + \theta = 180](https://img.qammunity.org/2021/formulas/mathematics/high-school/v2dalc9tu4ajf6ibu1wvf7av0sptdm6139.png)
Make
the subject of formula
![\theta = 180 - 86.3](https://img.qammunity.org/2021/formulas/mathematics/high-school/cmq68jzp2p0500enrdompuiantjh8sb4o0.png)
![\theta = 93.7](https://img.qammunity.org/2021/formulas/mathematics/high-school/5cfhi1yw7249jtpkpltmp6tl39p6m51677.png)