Answer:
[N2O4] = 0.0573M
[NO2] = 0.0163M
Step-by-step explanation:
The equilibrium of N2O4 is:
N2O4(g)⇌2NO2(g)
Where Kc is defined as:
Kc = 4.64x10⁻³ = [NO2]² / [N2O4]
When you add just N2O4, the reaction will occurs until [NO2]² / [N2O4] = 4.64x10⁻³. Here, the system reaches equilibrium.
That means if 0.0655M N2O4 begin reaction, in equilibrium we will have:
[N2O4] = 0.0655M - X
[NO2] = 2X
Where X is defined as reaction coordinate
Replacing in Kc:
4.64x10⁻³ = [NO2]² / [N2O4]
4.64x10⁻³ = [2X]² / [0.0655-X]
3.0392x10⁻⁴ - 4.64x10⁻³X = 4X²
3.0392x10⁻⁴ - 4.64x10⁻³X - 4X² = 0
Solving for X:
X = -0.0093 → False solution. there is no negative concentrations
X = 0.008156M → Right solution.
Replacing X, equilibrium concentrations are:
[N2O4] = 0.0655M - X
[NO2] = 2X
[N2O4] = 0.0573M
[NO2] = 0.0163M