123k views
1 vote
If 50 km thick crust having an average density of 3.0 g/cm3 has a surface elevation of 2.5 km above sea level, what would you predict about the surface elevation for 50 km thick crust with an average density of 2.8 g/cm3

User Sharvey
by
5.1k points

1 Answer

3 votes

Answer:

To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.

The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.

Thus let the density of the material be Pm

50*3= 47.5*Pm

Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube

Thus with an average density of 2.8gram per centimeter cube

50*2.8= (50-x)*3.16

(50-x)= (50*2.8)/3.16

50-x=44.3

x=50-44.3= 5.7

Step-by-step explanation:

To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.

The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.

Thus let the density of the material be Pm

50*3= 47.5*Pm

Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube

Thus with an average density of 2.8gram per centimeter cube

50*2.8= (50-x)*3.16

(50-x)= (50*2.8)/3.16

50-x=44.3

x=50-44.3= 5.7

User Pooja Nilangekar
by
4.8k points