152k views
2 votes
Amy and Bob decide to paint one wall of a building. Working alone, Amy takes 12 hours to paint the entire wall while Bob takes 18 hours for the same. Amy painted the wall for 4 hours and then Bob took over and completed the wall. How long did it take for them to paint the entire wall

User Tedward
by
8.2k points

1 Answer

6 votes

Answer:

16 hours

Explanation:

From the above question, we are given the following information

For one wall, working alone,

Amy can paint for 12 hours

Which means, in

1 hour , Amy would have painted = 1/12 of the wall

Bob can paint for 18 hours

Which means ,

in 1 hour, Bob would have painted = 1/18 of the wall.

We are told Amy painted the wall for 4 hours and then Bob took over and completed the wall.

Step 1

Find the portion of the wall Amy painted before Bob took over.

Amy painted the wall for 4 hours before Bob took over.

If:

1 hour = 1/12 of the wall for Amy

4 hours =

Cross multiply

4 × 1/12 ÷ 1

= 4/12 = 1/3

Amy painted one third(1/3) of the wall

Step 2

Find the number of hours left that Bob used in painting the remaining part of the wall

Let the entire wall = 1

If Amy painted 1/3 of the wall

Bob took over and painted = 1 - 1/3

= 2/3 of the wall

If,

Bob painted 1/18 of the wall = 1 hour

2/3 of the wall = ?? = Y

Cross multiply

2/3 × 1 = 1/18 × Y

Y = 2/3 ÷ 1/18

Y = 2/3 × 18/1

Y = 36/3

Y = 12 hours.

This means, the number of hours Bob worked when he took over from Amy = 12 hours.

Step 3

The third and final step is to calculate how many hours it took them to paint the wall

Number of hours painted by Amy + Number of hours painted by Bob

= 4 hours + 12 hours

= 16 hours

Therefore, it took them 16 hours to paint the entire wall.

User Jesse Rusak
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.