Answer:
THE HEAT OF COMBUSTION IS 4995.69 kJ/mol OF OCTANE.
Step-by-step explanation:
Heat capacity = 6.18 kJ/C
Temperature change = 41.5 C - 22.0 C = 19.5 C
Heat required to raise the temperature by 19.5 °C is:
Heat = heat capacity * temperature change
Heat = 6.18 kJ/ C * 19.5 C
heat = 120.51 kJ of heat
120.51 kJ of heat is required to raise the temperature of 2.75 g sample of a liquid octane.
Molar mass of octane = ( 12* 8 + 1 * 18) = 114 g/mol
So therefore, the heat of the reaction per mole of octane will be:
120.51 kJ of heat is required for 2.75 g of octane
x J of heat will be required for 114 g of octane
x J = 120.51kJ * 114 / 2.75
x = 4995.69 kJ of heat per mole.
In conclusion, the heat of the combustion reaction in kJ / mole of octane is 4995.69 kJ/mol