Answer:
20 m
Step-by-step explanation:
Given in the y direction:
Δy = 10 m
v₀ = 25 m/s sin 37° = 15.0 m/s
a = -10 m/s²
Find: t
Δy = v₀ t + ½ at²
10 m = (15.0 m/s) t + ½ (-10 m/s²) t²
10 = 15t − 5t²
2 = 3t − t²
t² − 3t + 2 = 0
(t − 1) (t − 2) = 0
t = 1 or 2
Since the projectile reaches Q before it reaches the peak, we want the lesser time, so t = 1.
Given in the x direction:
v₀ = 25 m/s cos 37° = 20.0 m/s
a = 0 m/s²
t = 1 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.0 m/s) (1 s) + ½ (0 m/s²) (1 s)²
Δx = 20 m