Answer:
Explanation:
From the given information:
the null and alternative hypotheses in symbolic form for this claim can be computed as:
![H_o:\mu = 18 \\ \\ H_a : \mu > 18](https://img.qammunity.org/2021/formulas/mathematics/high-school/nkz3pyjr9swchlnf5877c8wihocu3oo1rc.png)
Mean =
![(18.5+18.2+20+21.3+17.9+17.9+18.1+17.5+20+18)/(10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3vz9nv2taf1408jck8o1khdaw4qub3ogm7.png)
Mean = 18.74
Standard deviation
![\sigma = \sqrt{(\sum(x_i - \mu)^2)/(N)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/o9h07krh0fs5rws9h1zqpmgjnv3vxs4s62.png)
Standard deviation
![\sigma = \sqrt{((18.5 - 18.74)^2+(18.2 - 18.74)^2+(20 - 18.74)^2+...+(18 - 18.74)^2)/(10)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/2lup0pzpx462llccv7cdzkms1e9b53neaq.png)
Standard deviation
= 1.18
The test statistics can be computed as follows:
![Z= (X- \mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/6q76hywwmj6j5gh1w0vunrwrgmrzfa70cd.png)
![Z= (18.6- 18)/((1.18)/(√(10)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/fyyu13ss1l3z8s66ve9qpncenm93kc8sq3.png)
![Z= (0.6)/((1.18)/(3.162))](https://img.qammunity.org/2021/formulas/mathematics/high-school/5srpilnao5nk81dprpfnvuapi0bnkl4xdv.png)
Z = 1.6078
Z = 1.61
Degree of freedom = n -1
Degree of freedom = 10 -1
Degree of freedom = 9
Using t - calculator at Z = 1.6078 and df = 9
The P - value = 0.0712