160k views
4 votes
Perform all indicated operations, and express each answer in simplest form with positive exponents. Assume that all variables represent positive real numbers. Have to show all work.

Perform all indicated operations, and express each answer in simplest form with positive-example-1

1 Answer

6 votes

Answer:

a.
-( 4√(3) + 3)

b.
x^{(-5)/(12)} y^{(31)/(24)}

c.
(8√(x) + 8√(5))/(x - 5)

d.
45 + 12√(5y) + 4 y

e.
-((3)/(5x))^{(1)/(2)}

Explanation:

a.


√(12) - √(108) - \sqrt[3]{27}

Expand each expression


√(4*3) - √(36 * 3) - \sqrt[3]{3*3*3}

Split the first two surds


√(4)*√(3) - √(36) * √(3) - \sqrt[3]{3*3*3}


2*√(3) - 6 * √(3) - \sqrt[3]{3*3*3}

Apply law of indices


2*√(3) - 6 * √(3) - \sqrt[3]{3^3}

Apply law of indices


2*√(3) - 6 * √(3) - 3^{3*(1)/(3)}


2*√(3) - 6 * √(3) - 3^(1)


2*√(3) - 6 * √(3) - 3


2√(3) - 6√(3) - 3


- 4√(3) - 3

Factorize


-( 4√(3) + 3)

The expression cannot be further simplified

b.


(\frac{x^{(-3)/(4)}y^{(2)/(3)}}{x^{(-1)/(3)}y^{(-5)/(8)}})

Expand the expression


(\frac{x^{(-3)/(4)} * y^{(2)/(3)}}{x^{(-1)/(3)} * y^{(-5)/(8)}})

Apply the following law of indices;


(a^m)/(a^n) = a^(m-n)


x^{{(-3)/(4) - (-1)/(3)}} * y^{{(2)/(3) - (-5)/(8)}}}


x^{{(-3)/(4) + (1)/(3)}} * y^{{(2)/(3) + (5)/(8)}}}

Add the exponents


x^{(-9+4)/(12)} * y^{{(16+15)/(24)}}}


x^{(-5)/(12)} * y^{{(31)/(24)}}}


x^{(-5)/(12)} y^{(31)/(24)}

The expression cannot be further simplified

c.


(8)/(√(x) - √(5))

Rationalize the denominator


(8)/(√(x) - √(5)) * (√(x) + √(5))/(√(x) + √(5))


(8(√(x) + √(5)))/((√(x) - √(5))(√(x) + √(5)))

Simplify the numerator


(8√(x) + 8√(5))/((√(x) - √(5))(√(x) + √(5)))

Simplify the denominator by difference of two squares


(8√(x) + 8√(5))/(√(x)^2 - √(5)^2)


(8√(x) + 8√(5))/(x - 5)

The expression cannot be further simplified

d.


(3√(5) + 2√(y))^2

Expand the expression


(3√(5) + 2√(y))(3√(5) + 2√(y))

Open the bracket


3√(5) (3√(5) + 2√(y))+ 2√(y)(3√(5) + 2√(y))

Open both brackets


3√(5) *3√(5) + 3√(5)*2√(y)+ 2√(y)*3√(5) + 2√(y)*2√(y)


(3√(5) *3√(5)) + (3√(5)*2√(y))+ (2√(y)*3√(5)) + (2√(y)*2√(y))

Multiply each expression in the bracket


(3*3√(5*5)) + (3*2√(5*y))+ (2*3√(5*y)) + (2*2√(y*y))


(9√(25)) + (6√(5y))+ (6√(5y)) + (4√(y^2))

Solve like terms


(9√(25)) + (12√(5y)) + (4√(y^2))

Take square root of 25 and y²


(9 * 5) + (12√(5y)) + (4 * y)


(45) + (12√(5y)) + (4 y)

Remove the brackets


45 + 12√(5y) + 4 y

The expression cannot be further simplified

e.


-\sqrt{(3)/(5x)}

This expression can not be simplified; However, it can be rewritten, by applying law of indices as


-((3)/(5x))^{(1)/(2)}

User MrWhite
by
5.5k points