Answer:
the probability that they find enough subjects for their study is 0.9515
Explanation:
From the given information:
Let X be the random variable that follows a normal distribution.
Therefore:
X
Binomial(n=733,p=0.04)
![\mu = np](https://img.qammunity.org/2021/formulas/mathematics/high-school/3cko2tpvd4bz9ddg83dc3h4y9ee2xmybs2.png)
![\mu = 733*0.04](https://img.qammunity.org/2021/formulas/mathematics/high-school/5smdmwa8ypa9m8t77qrsr1fh90c4ciicgy.png)
![\mu = 29.32](https://img.qammunity.org/2021/formulas/mathematics/high-school/aj9x5jhwwe3revks4r4kj4jgx3xhnnt2o8.png)
![\sigma = √(np(1-p))](https://img.qammunity.org/2021/formulas/mathematics/college/2ex9ki4qbgo2tswci59kzkjlkdnx4lb32w.png)
![\sigma = √(29.32(1-0.04))](https://img.qammunity.org/2021/formulas/mathematics/high-school/lmholhlawms8p3ktcrebq14h7d6s5bq6uy.png)
![\sigma = √(29.32(0.96))](https://img.qammunity.org/2021/formulas/mathematics/high-school/r7sr0179720kdqy21w7p0zridh1usv77ct.png)
![\sigma = √(28.1472)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8mn0066nnraldc9p3kja0265e1akgvbvzf.png)
![\sigma = 5.305](https://img.qammunity.org/2021/formulas/mathematics/high-school/q46ogc8pjy4puyg8wa2emqew0fdxm2livt.png)
The probability of P(X ≥ 21) lies in the region between 20.5 and 21.5 by considering a discrete contribution of a continuous normal distribution. Eventually, X > 20.5
∴
P(X >20.5)= P(Z > z)
Using standard normal z formula:
![z = (x-\mu)/(\sigma)](https://img.qammunity.org/2021/formulas/physics/high-school/kbrxaothx8fd1fzdlhfaiqwvz8zoimt00h.png)
![z = (20.5-29.32)/(5.305)](https://img.qammunity.org/2021/formulas/mathematics/high-school/89k5s2q4wctlqaun776p44zt4cm66bmpa3.png)
![z = (-8.82)/(5.305)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gozosrdir10fbnk8jnn381jj5qb2bhvbn8.png)
![z = -1.662582](https://img.qammunity.org/2021/formulas/mathematics/high-school/ykjtd87jzk3o8jv0zi35t1lqlfrgrcvos4.png)
z = -1.66
P(X >20.5)= P(Z > -1.66)
From the standard z tables ;
P(X >20.5)= 1 - 0.0485
P(X >20.5)= 0.9515