Answer:
The regression model is:
y = 20.29 + 0.73·x
Explanation:
In this case a regression model is to be formed to predict the final average in the course based on the first test grade.
Use Excel to form the regression model.
The output is attached below.
The regression model is:
y = 20.29 + 0.73·x
Predict the final average of a students who made an 83 on the first test as follows:
y = 20.29 + 0.73·x
= 20.29 + 0.73 × 83
= 80.88
The final average of a students who made an 83 on the first test would be 80.88.
From the output:
R² = 0.839
Then the correlation coefficient will be:

The value of r is 0.92.
The coefficient of determination R² specifies the percentage of the variance in the dependent-variable (Y) that is forecasted or explained by linear regression and the forecaster variable (X, also recognized as the independent-variable).
In this case, the R² value of 0.839 implies that 83.9% of the variation in the final average can be explained by the grades in the first test.