Answer:
x < - 2.75, and x > - 2.25
Explanation:
Here we can apply the absolute value rule " If say | u | > a, and a > 0, then u < - a, and u > a. " If a were to be less than 0 ( a < 0 ) then their would be infinitely many solutions as the absolute value will always be greater than or equal to 0.
In this case let us consider both options, u < - a, and u > a,
2x + 5 < - 0.5 or 2x + 5 > 0.5 - solving for each of these inequalities we can combine both intervals and receive the solution
2x + 5 < - 0.5 : 2x < - 5.5, x < - 5.5 / 2, x < - 2.75
2x + 5 > 0.5 : 2x > - 4.5, x > - 4.5 / 2, x > - 2.25
Our solution is hence x < - 2.75, and x > - 2.25. Combining each of the intervals we receive our solution. Note that we can't represent this as one compound inequality as their signs differ.