15.6k views
5 votes
Sekkrit!!! Find the inverse of f(x) = 3x-5

2 Answers

4 votes

Answer:

1/3(x+5)

Explanation:

f(x) = 3x-5

y = 3x-5

Exchange x and y

x = 3y-5

Solve for y

Add 5 to each side

x+5 = 3y

Divide each side by 3

1/3 ( x+5) = 3y/3

1/3 ( x+5) = y

The inverse is 1/3(x+5)

User Imansdn
by
4.7k points
5 votes

Answer:


f^(-1)(x)=(x+5)/(3)

Explanation:


f(x)=3x-5


\mathrm{We \: need \: to \: find \: the \: inverse \: of \: the \: function.} \\ \mathrm{The \: inverse \: of \: a \: function \: reverses \: the \: original \: function.}


\mathrm{Plug \: f(x) \: as \: y.}


y=3x-5


\mathrm{Solve \: for \: x.}


\mathrm{Add \: 5 \: to \: both \: sides \: of \: the \: equation.}


y+5=3x


\mathrm{Divide \: both \: sides \: of \: the \: equation \: by \: 3.}


(y+5)/(3) =x


\mathrm{Switch \: variables.}


(x+5)/(3) =y


\mathrm{Plug \: y \: as \: f^(-1)(x).}


f^(-1)(x)=(x+5)/(3)

User Angel Todorov
by
4.4k points