Answer:
-8/5
Explanation:
Given two lines y=(3a+2)x-2 and 2y=(a-4)x+2, Since both lines are parallel to each other, this means that the slope of both lines are the same
Let's get the slope of both equation. For the first equation;
y=(3a+2)x-2
We can see that the equation is written in this form y = mx+c where m is the slope of the line. On comparison, the slope of the given line is 3a+2
Similarly for the second line;
2y=(a-4)x+2
Re-writing in the standard format we will have;
y = (a-4)x/2+2/2
y = (a-4)x/2 + 1
The slope of the second line is (a-4)/2
On equating the slope of both lines to get the value of 'a' we will have;
3a+2 = (a-4)/2
Cross multiplying
2(3a+2) = a-4
6a+4 = a-4
Collecting like terms;
6a-a = -4-4
5a = -8
a = -8/5
Hence the value of a is -8/5